Skip to main content
Log in

Universal short-range ab initio atom–atom potentials for interaction energy contributions with an optimal repulsion functional form

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The repulsion term in conventional force fields constitutes a major source of error. Assuming that this could originate from a too simple analytical functional form, we analyzed various analytical functions using ab initio exchange component values as a reference and obtained (α + β R −1)exp(−γ R) as the optimal form to represent the repulsion term. Universal exchange, delocalization, and electrostatic penetration potentials approximating the corresponding interaction energy components defined within hybrid variation-perturbation theory (HVPT) were derived using as a reference a training set of 660 biomolecular complexes. The electrostatic multipole term was calculated using cumulative atomic multipole moments, whereas correlation contribution including dispersion term and first-order correlation correction was estimated from nonempirical D a s functions derived by Pernal et al. The resulting non-empirical atom–atom potentials (NEAAP) were tested for several urokinase–inhibitor complexes yielding improved docking results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sokalski WA, Lowrey AH, Roszak S, Lewchenko V, Blaisdell J, Hariharan PC, Kaufman JJ (1986) Nonempirical atom–atom potentials for main components of intermolecular energy. J Comp Chem 7:693–700

    Article  CAS  Google Scholar 

  2. Gilson MK, Honig BH (1988) Energetics of charge–charge interactions in proteins. Proteins: Struct Funct Dyn 3:32–52

    Article  CAS  Google Scholar 

  3. Roterman I, Gilson K D, Scheraga H A (1989) A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. 1. Conformational predictions for the tandemly repeated peptide (a s na l aa s np r o)9. J Biomol Str Dyn 7:391–419

    Article  CAS  Google Scholar 

  4. Gresh N, Claverie P, Pullman A (1986) Intermolecular interactions: elaboration on an additive procedure including an explicit charge-transfer contribution. Int J Quantum Chem 29:101–118

    Article  CAS  Google Scholar 

  5. Singh UC, Kollman PA (1985) A water dimer potential based on ab initio calculations using Morokuma component analyses. J Chem Phys 83:4033–4040

    Article  CAS  Google Scholar 

  6. Torheyden M, Jansen G (2006) A new potential energy surface for the water dimer obtained from separate fits of ab initio electrostatic, induction, dispersion and exchange energy contributions. Mol Phys 104:2101–2138

    Article  CAS  Google Scholar 

  7. Parish RM, Sherill CD (2014) Spatial assignment of symmetry adapted perturbation theory interaction energy components: the atomic SAPT. J Chem Phys 141:044115

    Article  Google Scholar 

  8. Schmidt JR, Yu K, McDaniel JG (2015) Transferable next-generation force fields from simple liquids to complex materials. Acc Chem Res 48:548–556

    Article  CAS  Google Scholar 

  9. Zgarbová M, Otyepka M, Sponer J, Hobza P, Jurecka P (2010) Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER intermolecular terms with rigorous DFT-SAPT calculations. Phys Chem Chem Phys 12:10476–10493

    Article  Google Scholar 

  10. Grzywa R, Dyguda-Kazimierowicz E, Sieńczyk M, Feliks M, Sokalski W A, Oleksyszyn J (2007) The molecular basis of urokinase inhibition: from the nonempirical analysis of intermolecular interactions to the prediction of binding affinity. J Mol Model 13:677–683

    Article  CAS  Google Scholar 

  11. Murrell JN, Teixeira JJ (1970) Dependence of exchange energy on orbital overlap. Chem Phys Lett 19:521–525

    CAS  Google Scholar 

  12. Sokalski WA, Chojnacki H (1978) Approximate exchange perturbation study of inter-molecular interactions in molecular complexes. Int J Quantum Chem 13:679–692

    Article  CAS  Google Scholar 

  13. Sokalski WA, Roszak S, Lowrey AH, Hariharan P, Walter Koski S, Kaufman JJ (1983) Crystal structure studies using ab-initio potential functions from partitioned MODPOT/VRDDO SCF energy calculations. I. N 2 and C O 2 test cases. II. Nitromethane C H 3 N O 2. Int J Quantum Chem: Quantum Chemistry Symp 17:375–391

    CAS  Google Scholar 

  14. Kitaura K, Morokuma K (1976) New energy decomposition scheme for molecular-interactions within Hartree–Fock approximation. Int J Quantum Chem 10:325–340

    Article  CAS  Google Scholar 

  15. Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev 94:1887–1930

    Article  CAS  Google Scholar 

  16. Politzer P, Murray J, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:52

    Article  Google Scholar 

  17. Sokalski WA, Roszak S, Pecul K (1988) An efficient procedure for decomposition of the SCF interaction energy into components with reduced basis set dependence. Chem Phys Lett 153:153–159

    Article  CAS  Google Scholar 

  18. Szefczyk B, Mulholland A, Ranaghan K, Sokalski W A (2004) Differential transition state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field. J Am Chem Soc 126:16148–16159

    Article  CAS  Google Scholar 

  19. Langner KM, Janowski T, Gora R, Dziekonski P, Sokalski W A, Pulay P (2011) The ethidium-UA/AU intercalation site: effect of model fragmentation and backbone charge state. J Chem Theor Comp 7:2600–2609

    Article  CAS  Google Scholar 

  20. Sokalski WA, Poirier RA (1983) Cumulative atomic multipole representation of the molecular charge distribution and its basis set dependence. Chem Phys Lett 98:86–92

    Article  CAS  Google Scholar 

  21. Sokalski WA, Sawaryn A (1987) Correlated molecular and cumulative atomic multipole moments. J Chem Phys 87:526–534

    Article  CAS  Google Scholar 

  22. Schmidt MW, Baldridge KK, Boatz JA, Elbert S T, Gordon M S, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comp Chem 14:1347–1363

    Article  CAS  Google Scholar 

  23. Sokalski WA, Shibata M, Ornstein RL, Rein R (1993) Point-charge representation of multicenter multipole moments in calculation of electrostatic properties. Theor Chim Acta 85:209–216

    Article  CAS  Google Scholar 

  24. Devereux M, Raghunathan S, Federov DG, Meuwly M (2014) A novel, computationally efficient multipolar model employing distributed charges for molecular dynamics simulations. J Chem Theor Comp 10:4229–4241

    Article  CAS  Google Scholar 

  25. Chalasinski G, Szczesniak MM (1994) Origins of structure and energetics of van der Waals clusters from ab initio calculations. Chem Rev 94:1723–1765

    Article  CAS  Google Scholar 

  26. Sokalski WA, Roszak S (1991) Efficient techniques for the decomposition of intermolecular interaction energy at SCF level and beyond. J Mol Struct(THEOCHEM) 234:387–400

    Article  Google Scholar 

  27. Podeszwa R, Pernal K, Patkowski K, Szalewicz K (2010) Extension of the Hartree–Fock plus dispersion method by first-order correlation effects. Phys Chem Lett 1:550–555

    Article  CAS  Google Scholar 

  28. Řezáč J, Riley KE, Hobza P (2011) S66: A well-balanced database of benchmark interaction energies relevant to biomolecular structures. J Chem Theor Comput 7:2427–2438

    Article  Google Scholar 

  29. Powell MJD (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comp J 7:155–162

    Article  Google Scholar 

  30. Tafipolsky M, Engels B (2011) Accurate intermolecular potentials with physically grounded electrostatics. J Chem Theor Comp 7:1791–1803

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Wroclaw Research Centre EIT+ within the project ”Biotechnologies and advanced medical technologies” - BioMed (POIG.01.01.02-02-003/08) co-financed by the European Regional Development Fund (Operational Programme Innovative Economy, 1.1.2). Partial financing by a statutory activity subsidy from Polish Ministry of Science and Higher Education for Faculty of Chemistry of Wroclaw University of Technology is also acknowledged. Calculations were performed in supercomputer centers in Wroclaw (WCSS), Poznan (PCSS), and Warsaw(ICM). The authors are indebted to Dr. Karol M. Langner from the University of Virginia at Charlottesville, VA, USA, for stimulating discussion and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Andrzej Sokalski.

Additional information

This paper belongs to Topical Collection 6th conference on Modeling & Design of Molecular Materials in Kudowa Zdrój (MDMM 2014)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konieczny, J.K., Sokalski, W.A. Universal short-range ab initio atom–atom potentials for interaction energy contributions with an optimal repulsion functional form. J Mol Model 21, 197 (2015). https://doi.org/10.1007/s00894-015-2729-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2729-7

Keywords

Navigation